Generation of Similarity Measures from Different Sources
نویسندگان
چکیده
Knowledge that quantifies the similarity between complex objects forms a vital part of problem-solving expertise within several knowledgeintensive tasks. This paper shows how implicit knowledge about object similarities is made explicit in the form of a similarity measure. The development of a similarity measure is highly domain-dependent. We will use the domain of fluidic engineering as a complex and realistic platform to present our ideas. The evaluation of the similarity between two fluidic circuits is needed for several tasks: (i) Design problems can be supported by retrieving an existing circuit which resembles an (incomplete) circuit description. (ii) The problem of visualizing technical documents can be reduced to the problem of arranging similar documents with respect to their similarity. The paper in hand presents new approaches for the construction of a similarity function: Based on knowledge sources that allow for an expert-friendly knowledge acquisition, machine learning is used to compute an explicit similarity function from the acquainted knowledge.
منابع مشابه
An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملA Geometric View of Similarity Measures in Data Mining
The main objective of data mining is to acquire information from a set of data for prospect applications using a measure. The concerning issue is that one often has to deal with large scale data. Several dimensionality reduction techniques like various feature extraction methods have been developed to resolve the issue. However, the geometric view of the applied measure, as an additional consid...
متن کاملHESITANT FUZZY INFORMATION MEASURES DERIVED FROM T-NORMS AND S-NORMS
In this contribution, we first introduce the concept of metrical T-norm-based similarity measure for hesitant fuzzy sets (HFSs) {by using the concept of T-norm-based distance measure}. Then,the relationship of the proposed {metrical T-norm-based} similarity {measures} with the {other kind of information measure, called the metrical T-norm-based} entropy measure {is} discussed. The main feature ...
متن کاملNew distance and similarity measures for hesitant fuzzy soft sets
The hesitant fuzzy soft set (HFSS), as a combination of hesitant fuzzy and soft sets, is regarded as a useful tool for dealing with the uncertainty and ambiguity of real-world problems. In HFSSs, each element is defined in terms of several parameters with arbitrary membership degrees. In addition, distance and similarity measures are considered as the important tools in different areas such as ...
متن کاملResemblance among similarity measures in semantic representation
Similarity measures, extent to which two concepts have similar meanings, are key to understanding how concepts are represented, with different theoretical perspectives relying on very different sources of data from which similarity can be calculated. Experiential/embodied theories use verbal features or property ratings; distributional/relational ones use cooccurrence. Similarity may also be es...
متن کامل